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INTRODUCTION

In the high temperature environment of advanced high performance

turbines of interest to the Air Force, cooling air and its associated cost

V becomes a critical item. Typically cooling air is bled from the compressor

and delivered to the turbine through the machine core out of the primary gas

path and circumventing the combustor. Provided the cooling air is discharged

into the turbine sufficiently early, the major losses are incurred in the off

gas path flow and delivery system. These losses can be an appreciable cost

in overall efficiency when the cooling mass flow requirements become a

significant fraction of the primary gas flow, as occurs in most high

temperature high performance engines. Taking the bleed flow out of the gas

path and delivering it to the turbine with little loss in total pressure

turns out to be a difficult task. Furthermore, the cooling air can be

required also to cool the turbine disks prior to or in addition to, cooling

the turbine rotor or vane blades.

A major problem that can arise in this cooling air delivery process is

associated with ability of the rotor disk to pump the cooling air out into

the gas path. The so-called 'disk pumping problem' arises in part by virtue

of the shear stress on the rotating disk. This is in itself a drag producing

mechanism. Enough air is required to be driven out in the gas path to

prevent ingestion of the hot main gas flow into the disk cavity. However,

the amount involved should not be so much as to adversely thicken the endwall

boundary layers or to otherwise disrupt the primary gas flow. Furthermore,

it is desirable on an overall basis to minimize the coolant mass flow

K requirements.

V Further complications can arise by virtue of modern turbine design which

take advantage of the structural savings which result from hanging the

% stators from the casing, as is shown schematically in Fig. 1. The axial

static pressure drop in the turbine requires the stator to be sealed and one

possible method is shown in Fig. 1. Under certain conditions the resulting

configuration may allow ingestion of the hot main flow gas into the cavity

such as in cavity "d", and special care is required to inhibit or prevent

this process. Clearly the problems of disk pumping, disc cooling and overall

interaction with the main gas path are complex. In view of their importance

to structural integrity, durability and efficiency it would be very desirable

to have a good understanding and predictive capability for these flows.

.. . . . ...



Insofar as the analysis is concerned, unfortunately the complex

4. turbulent recirculating rotational nature of the flow does not permit

significant simplification in developing a mathematical approach, and

consequently to date very little has been done in the way of developing

formal analyses for this problem from the basic governing equations. Various

geometry dependent variations of the disk pump concept can arise, however,

only a Limited amount of experimental data for these various possible

configurations is available. Hence, an analysis capable of accurately and

effLciently predicting disk cavity flows would be a major tool for both the
research and design engineers. The initial development of such a program was

the major focus of the present Phase I effort.

C. - Considering that the disk pump may operate under the possible

recirculating and turbulent flow conditions, it is clear that the solution of

the ensemble-averaged Navier-Stokes equations represent the appropriate

approach to the problem. However, accurate and efficient solutions of the

% -, Navier-Stokes equations in complex geometries for realistic flow conditions

represent a formidable task. Recently, Buggeln and McDonald (Ref. 1) have

successfully solved the Navier-Stokes equations for a variety of labyrinth

seal configurations at realistic flow conditions, and have obtained results

which show good agreement with experimental measurements. Although the disk
.

pumping problem differs from the labyrinth seal problem, it was felt that

-.' this same procedure with modification could be used as an accurate and

efficient approach to the disk pumping problem. Therefore, under the present

Phase I effort, the work focused upon demonstrating and assessing the

applicability of a modified version of this labyrinth seal computer code to

- the problem of the flow in a disk pumping cavity of type d in Fig. 1.

In the present study an axisymmetric configuration was supposed for the

" disk pump, and this is considered a good approximation for the present

- - program since the axisymmetric configuration gives rise to the relevant

physical flow phenomena. It should be noted that the axisymmetric

configuration permits swirling cavity flows to arise, but would not treat a

"-''" discretely three-dimensional proturberance, such as a bolt head. Fully

'- three-dimensional flows, although possible to compute with this type of

'"." analysis (e.g. Refs. 2 and 3), would require considerably more computer run

time than axisymmetric flows. Therefore, since the present effort was to

concentrate upon assessing the potential of the approach, it was decided not

'.4'
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-; to pursue three-dimensional flows under Phase I of the effort.

Three-dimensional flows as well as other complicating factors could be

performed on a Phase 1I effort.

In order to demonstrate the ability to analyze simple disk pumping

flows, the present effort concentrated on predicting the flow in a cavity of

the type d shown in Fig. 1. In this type of cavity one disk wall is fixed,

the other rotating. Air enters along the disk inner radius wall and leaves

along the disk periphery. The final model disk/cavity configurations

actually utilized in the present study are shown in Fig. 2. Although

somewhat simplified, it represents a viable approximation to actual

geometries.

This report presents and describes the analysis of disk pumping flows

based on the linearized block implicit (LBI) technique for the numerical

solution of the multidimensional, time-dependent Navier-Stokes equations by

Briley and McDonald (Ref. 4). Two different shapes of disk pump were

considered in the demonstration calculation (Fig. 2). In the following

sections, a general description of the present analysis, procedures, results

and an assessment of the potential of the method are given.

ANALYSIS

Governing Equations

The equations used in the present effort are the ensemble-averaged,

time-dependent Navier-Stokes equations which can be written in vector form as

Continuity

ap + V ou - 0-+t uU(1)
3t

Momentum

pu + V• (PO) -Vp + V ( + (2)a)t

Energy

aph + V (Ouh) V (- + • ( + + + 0 (3)
at Dt

K,.(".,$
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where p is density, u is velocity, p is pressure, v is the molecular stress

tensor, NT is the turbulent stress tensor, h is enthalpy, q is the mean

heat flux vector, qT is the turbulent heat flux vector, * is the mean flow
dissipaLtion raLe and E is the turbulence energy dissipation rate. If the

flow is assumed to have a constant total temperature, the energy equation is

replaced by

T T + constant (4)
o 2C

p

where To is the stagnation temperature, q is the magnitude of the velocity

and Cp is the specific heat at constant pressure. In both cases considered

in this work the assumption of constant total temperature has been invoked by

using Eq. 4 as an approximation to Eq. 3 for the sole purpose of reducing

computer run time where the constant To assumption was warranted.

A number of terms appearing in Eqs. 1-4 require definition. The stress

tensor appearing in Eq. 2 is defined as

" :'- . =2p - (-i P-AB) V- U H (5)

where KB is the bulk viscosity coefficient and is the deformation tensor,

defined by:

"-:- 1 (Vl, + + T)
I-D - +-2 (6)

In addition the turbulent stress tensor has been modeled using an isotropic

eddy viscosity such that:

T i' + ' = 211 (7)

where PT, the turbulent viscosity, is determined by a suitable turbulence

model. Turbulence modeling is described in some detail later.

*Equation 3 contains a mean heat flux vector defined as follows:

q K. (VT) (8)

o-- and a turbulent heat flux vector defined as:

q T (VT)

4F%
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where K and KT are the molecular (laminar) and turbulent thermal

conductivities, respectively.

Also appearing in Eq. 3 is the mean flow dissipation term 0.

2u G): ED 2 (V • )2 (10)

The equation of state for a perfect gas

p = pRT (11)

where R is the gas constant, the caloric equation of state

e c T (12)
v

and the definition of static enthalpy

h c T (13)
p

supplement the equations of motion.

Finally the flow properties P, K and KB are determined using the following

constitutive relations.

The molecular viscosity P is determined using Sutherland's law.

.3/2 T +  S
T T+ S 1  (14)

where S i = 100°K for air.

The bulk viscosity will be assumed to be zero,

KB  -i o (15)

and the thermal conductivity may be determined by use of a relation similar

to Sutherland's law viz.

:;" "3/2 T + S2
0 (260.6)

K TT + S
o o 2

. where S2  194°K for air.

V,5
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Turbulence Modeling

Three possible turbulence models are contained within the disk pump

code. These are i) zero equation model - (mixing length model),

(ii) one-equation model - (a turbulence energy-algebraic length scale model),

and (iii) two-equation model - (a turbulence energy-turbulence dissipation

model). Among these models (i) and (iii) were included in the computation.

Therefore, a detailed explanation would be given to only i) and (iii).

Zero Equation Model - (Mixing Length)

Of all available turbulence models, Prandtl's mixing length model is

probably still the most widely used. The model was originally developed for

use in unseparated boundary layer flow situations and has been shown to

perform well under such conditions. In the cases described in this report

the mixing length model has ben used during the early transient period of

flow development in a disk pump. An advantage of the rethod from the point of

view of economy is that is does not require additional transport equations to

model the effect of turbulence, but rather relates the Reynold's shear stress

to mean flow quantities via:

Puu! =Tj (17)
R- ax.
e 1

where

a, Pj 1/2
PT (2 ECD: D )

Re

where

t=mint., icdD]

where d is the normal distance to the nearest wall and D is van Driest

damping coefficient given by +
D =1- exp(- y+/A)

= 0.096

*.. Ic = 0.4 (18)

y du /v

6
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uT = (T/p) 1/ 2  (19)

where the local shear stress Tg is obtained from

T= (2 CD: ED )1/2

and is defined by Eq. 6.

One problem in the mixing length formulation is the definition of 6.

In boundary layers the streamwise velocity u approaches an edge velocity,

ue, asymptotically. However, a monotonic approach to an asymptotic edge

velocity is not characteristic of Navier-Stokes stlutions particularly in

complicated recirculating flows such as that would be considered in the

present report. In order to avoid the problem of determining the boundary

layer edge, 6, as defined in the usual boundary layer context, i.e., 6 is the

distance from the wall at which u/ue = 0.99, the following relation is

used. 6 = 2 .Od(q/qmax=c) (20)

In other words, 6, is taken as twice the distance (measured away from the

nearest wall) for which q/qmax = c. The value of c used in the present

effort was 0.90.

Two-Equation Model - (k-c)

The k-c, two-equation turbulence model [6, 71 in which both the

turbulence kinetic energy and the turbulence dissipation rate are governed by

transport equations represents a more general model. In this approach the

k-equation is as given by:

"(pk) + V * (PUk) = V T Vk + 2p [D : CD pc - 2pv (Vk1/212  (21)

and the C-equation by:

a(pc) + V. (puc) = V-- V ) + c (2p T D ID )+ 2u U cP

at c) 1 T T 2  k (22)

where following Reference 6

cI =1.55
and

= c2. [1 - 0.3 exp(-RT) 2 (23)

c = 2.02ce

7
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and RT is defined as:
" -k (24)

However, attempts to solve Eqs. 21 and 22 without modification fail

because an appropriate boundary condition for E at a solid boundary is

difficult to prescribe such that Eq. 22 is satisfied. In order to circumvent

this problem, Eq. 22, the turbulence dissipation equation, has been modified

by the inclusion of the term:

2 2
- 2mi (V2U) (25)T

As discussed by Jones and Launder (Ref. 6) inclusion of this term leads to

better agreement with experimentally measured k distributions in the

near-wall region. In addition, Jones and Launder's (Ref. 6) inclusion of the

term:

0 - 2pv (Vkl/2)2 (26)

in Eq. 21 is a device which models new wall dissipation and thus allows =0

* "to be prescribed as a function boundary condition.

Transformation of Governing Equations

The governing equations for the present problems have been given in the

- -previous section in vector form (Eqs. I - 3 and 21 - 22). However,
implementation of a solution procedure requires that these equations be

transformed into an appropriate coordinate system. Therefore, the governing

equations written in a cylindrical-polar coordinate system are transformed

with a general Jacobian transformation of the form

yJ = yJ I , x2 , t) (27)(27)
T =t

8VI



.qW ---

where (x , x2, x 3 ) = (r, E, z) are the original cylindrical polar

coordinates. The velocity components remain the components (Ul, U2 ,

U3 ) in the (xl, x2, x3) coordinate directions, respectively. The new

independent variables yJ are the computational coordinates in the

transformed system.

Application of the Jacobian transformation requires expansion of the

temporal and spatial derivatives using the chain rule, i.e.,

a+ 3 (28
at 3T 't1 ayij=l y

and

j-- I ' . (29)

ax. jul Yli ayi

where

t at
(30)

Y1

The relations Eqs. 29 - 30 are first substituted into the governing equations

written in cylindrical polar coordinates. Then the resulting equations are

multiplied by the Jacobian determinant of the inverse transformation,

ax 1  ax1  ax1
ay 1 y2 ay3

_ (x1 , x2 , x 3 ) ax2  ax2  ax2

1 2 3 . .. (3 1)
3(y1 , Y , y ) ay ay 3y3

ax 3  a 3  a)3

ayl y2 ay3

and the equations are cast into a conservative form using the following

relations

3 ayJ.
E --.. -0 (32)

j-1 ay a

9



3 
y

'I --J- = 0 (33)
T j=l ayi

where

-*1.Y yi,. Jy-j1

(34)

*j J ' j S

It should be noted that Equation 33 expresses a geometric conservation law

and plays an important role in enabling the equations of motion to be cast

into conservative form.

The particular conservation form developed implies that all factors involving

the radial coordinate r - x1 remain as they were before the Jacobian

transformation. The resulting equations are presented below as Eqs. 37 - 46.

The geometric relations Eq. 32 - 33 may be obtained from the

transformation relations for y$,J and y, in terms of the inverse

transformation derivatives

Y '1 = x2,2 x3,3 - x2,3x3,2

"\;?"Y '2 = x3,2 x,,3 - '3,3 X1,2

Y '3 Xl,2 x2,3 - X1,3 x2,2
K2

S'I =x 2,3 x 3 ,1 - x2, '3,3

x3,1 31,3 (35)

y 2 =x 3 , 3 K 1 1  3,1 l

Y '3 Xl, 3 x2,1 - 1,1 '2,3

3 -
y' I = x2, x3,2 2,2 3,1

Y '2 = x3,1 x, 2 - x3,2 X1,1

'''"^3 - - - -

Y '3 K 1 ,1 '2 ,2 - xl,2 x2,1

10
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:",3

' ax
y''=- " ' k (36)

."-acThe transformed governing equations may be written in the following

--o a ( compact form:

30jW) ff S) (i _.L (Jy, ) -i)

aT j = y 1 y3 ay

+ +

. + Yj -L (JYJi P' + i (YJ i G i)  (37)

+ JS + ic

where

Y9

t at

Y i =  (38)

1
4ax

Further, the coefficients Oi, Yi, i are given by

.'. ffi = , B =f 1, B fi 1

r 2 r 3

y = 1, y 1, y 1 (39)
1 2 r 3

= 1 , C , I
m 2 r 3r

and m I for all equations except the x2 - direction momentum equation,

-.M

-S
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for which m f 2. The vector variables used in Eq. 37 are defined as

i ": ° I PU IUi

PU2  PU2U i

pU3  PU3U.

+p F. = r Ui  (40)

ph phU.

pk pkUi : pcpc U .

where n = I for i 1 land n =0 for i =2, 3.

Ps i2 
r r2 T12

PS3 rT

P L 0 G0 0 (41)

0- rq1

a k0
0! -1°e

Ti2

.' G.= 0%, L

"T Yik,i for i = 2,3

a k
"'' IT y ei

.1 1 2

[/ % b



Note that the velocity components (U1 , U2, U3 ) are the cylindrical-

polar velocity components, and Tij is the stress tensor written in

cylindrical-polar coordinates. The molecular and turbulent stress tensors

may be written as

Tij 2 D (42)

2 fi i U f 

au1

- IU (3

D
1x

, - afi i [ u 2 + u ]

D 22  1 2 1
r alr

2

- au
D 33 3 (43)

ax3

= 1 [r (U2 ) +1 ax 1
2 - r r !

" D13 aux ;xIax ax

[-au auD 13 - 1 - 22 x 2  3x 3 ]

D' 1. 1 a (rU)+ 2+ (44)23- 1 - -
- r -

r ax1  a x2 x 3

au a

.13
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The derivatives required in Eqs. 43 - 44 must be expressed in terms of the

computational coordinates yJ using the chain rule, (Eq. 29).

Finally, the vector S contains source terms and certain differential

terms which do not conform to the basic structure of Eq. 37, and the vector C

contains the additional curvature terms due to the cylindrical-polar

coordinate system.

0

0

S 0 (45)

0

Dp + , + pe

Dt 1/2 2
T [2D D.. i -pe - 2pv (Vk )D.T)[+22 C2  £

Cl j [UT(2Dij D. ) + 2 T (V
2U)2 - C p k2 ]

SPU 2
2  

1 22
r r

1 PU U2
r (46)

0

0

0

Numerical Procedure

The numerical procedure used to solve the governing equations is a

consistently split linearized block implicit (LBI) scheme originally

developed by Briley and McDonald (Ref. 4). A conceptually similar scheme has

been developed for two-dimensional MHD problems by Lindemuth and Killeen

3l (Ref. 9). The procedure is discussed in detail in Refs. 4 and 5. The method

can be briefly outlined as follows: the governing equations are replaced by

'

14
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an implicit time difference approximation, optionally a backward difference

or Crank-Nicolson scheme. Terms involving nonlinearities at the implicit

time level are linearized by Taylor series expansion in time about the

solution at the known time level, and spatial difference approximations are

introduced. The result is a system of multidimensional coupled (but linear)

difference equations for the dependent variables at the unknown or implicit

time level. To solve these difference equations, the Douglas-Gunn (Ref. 10)

procedure for generating alternating-direction implicit (ADI) schemes as

perturbations of fundamental implicit difference schemes is introduced in its

natural extension to systems of partial differential equations.

This technique leads to systems of coupled linear difference equations having

narrow block-banded matrix structures which can be solved efficiently by

standard block-elimination methods.

The method centers around the use of a formal linearization technique

adapted for the integration of initial-value problems. The linearization

technique, which requires an implicit solution procedure, permits the

solution of coupled nonlinear equations in one space dimension (to the

requisite degree of accuracy) by a one-step noniterative scheme. Since no

iteration is required to compute the solution for a single time step, and

since only moderate effort is required for solution of the implicit

difference equations, the method is computationally efficient; this

efficiency is retained for multidimensional problems by using what might be

termed block ADI techniques. The method is also economical in terms of

computer storage, in its present form requiring only two time-levels of

storage for each dependent variable. Furthermore, the block ADI technique

reduces multidimensional problems to sequences of calculations which are

one-dimensional in the sense that easily-solved narrow block-banded matrices

associated with one-dimensional rows of grid points are produced. A more

detailed discussion of the solution procedure as discussed by Briley, Buggeln

and McDonald (Ref. 11) is given in the Appendix A.

15
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CURRENT EFFORTS

Objective

A primary objective of the current efforts was to demonstrate the

ability of a modified version of the labyrinth seal code to be applied to a

disk pumping cavity of the type d in Fig. 1. Since the present Phase I work

focused upon demonstration and assessment, model axisymmetric cavity shapes

were considered. This configuration allows swirling flows in the cavity

although the computation is performed in two dimensions since no azimuthal

variation is assumed. The current type of disk pump operates with one cavity

wall fixed, while the other rotating. Air enters at a location near the

* inner radius, and leaves along the disk periphery as shown in Fig. 2. The

disk periphery was assumed to be an exit boundary in the sense that air was

%: not peqitted to enter the cavity from the free stream and similarly flow

within the cavity was not permitted to leave via the inlet on the axis of

rotation. As shall be discussed, the specific objectives under the Phase I

* effort have been met completely.

Coordinate System

The coordinate system is an important component of the Navier-Stokes

analysis. An inappropriate coordinate system may lead to difficulty in

obtaining a converged solution and even exhibit physically unrealistic

predictions due to geometric truncation error. Therefore, generation f a

viable system is mandatory. Any coordinate system used in the analysis

* should satisfy conditions of Mi generality, (ii) smoothness,

(iii) resolvability and (iv) allow easy application of boundary conditions.

Obviously, a coordinate system must be sufficiently general to allow

application to a wide class of problems of interest if it is to be

practical. The metric data associated with the coordinte system must be

K! sufficiently smooth so that the variation from grid point to grid point does

not lead to a numerical solution dominated by metric coefficient truncation

*error; it should be noted that this requirement differs from the requirement

*of the existence of a specified number of transformation derivatives.

The coordinate system must resolve flow regions where rapid flow field

change occurs. Finally, coordinates should allow accurate implementation of
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boundary conditions. The specification of boundary surfaces which do not

fall upon coordinate lines or at specific grid points may present a difficult

problem for Navier-Stokes analyses. The problem is considerably more severe

in viscous flows where no-slip conditions on solid walls can combine with

boundary condition truncation error to produce numerical solutions which are

* both qualitatively and quantitatively in error. Thus, the property required

of any coordinate system to be used in a viscous analysis should be that

*boundary surfaces fall on coordinate lines. Such a system is called a

body-fitted coordinate system.

many alternative approaches are available for generating body-fitted

coordinates, although in general they can be categorized into three generic

groups. These are conformal, algebraic and elliptic. Conformal systems are

based upon well known conformal transformation techniques. Algebraic or

constructive techniques are typified by the method of Eiseman (Ref. 12) while

methods using elliptic partial differential equations are in the main based

on the work of Thompson, Thames and Mastin (Ref. 13). While the main

advantage of the use of elliptic generation is that the method is applicable

to complex geometries without the need to modify the basic approach for each

new configuration, algebraic methods have the apparent advantage of

conceptual simplicity for complex boundary geometries. In the present work

the constructive approach has been adopted, although the Thompson approach is

presently available at SRA and could be utilized in the future efforts

associated with disk pump flow analysis.

in the case of plain disk cavity, the coordinate system is

straightforward. A simple cylindrical coordiante system is utilized because

of its axisyimietric shape as shown in Fig. 3. Horizontal lines represent the

axial coordinate lines, while the radial coordinate lines are represented by

transverse lines. Partly embedded solid regions were assumed within the

domain of interest for coordinate generation. As a restilt, reentrant corners

were generated. A further distribution of grid points within the

* computational domain is required to obtain high grid resolution in regions

where rapid flow variations are expected. This is accomplished by use an

analytical transformation technique developed by Ohi (Ref. 14). The

transformation function is composed of a series of complementary error

functions. One of the advantages in the use of this transformation function

ties in the capability of controlling the local grid points distribution
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without effecting the distribution at other locations of interest. For

further details of the technique, the reader should refer to Ref. 14.

On the other hand, the shaped disk cavity grid coordinate system

requires a calculation or specification of arc lengths on the boundaries.

Then, the distribution of grid points on and within the boundaries are

obtained based on the parametrized arc length. The same transformation

technique (Ref. 14) was used to pack the grid points in the region of large

gradients in flow variables. The final coordinate systems used in the

present work are shown in Fig. 3.

Navier-Stokes Analysis

Having generated a viable coordinate system, the next step in the

process is to obtain a solution of the Navier-Stokes equations for the

specified coordinate system and flow conditions. The analysis was performed

in the same axisynuietric configurations as shown in Fig. 2. One of the

cavity walls was assumed to rotate about the axis at 3600 rpm, while the

other wall was stationary. The major parameters representing the turbine

disk test conditions are axial and tangential Reynolds numbers. The axial

Reynolds number is defined as Rez = I/pLr o where i is the mass flow rate

through the inlet, u is the laminar viscosity and ro is the maximum radius

of rig, while the tangential Reynolds number is defined as Ret = Pro2

-..- there P is the density, fl is the angular velocity of rotating disk wall. The

axial and tangential Reynolds number selected in the present analysis was

2.2 x 10, and 4.0 x 106, respectively. The laminar viscosity, v, in the

present analysis was 1.905 x 10-  (Newton-sec/m2 ). Other flow conditions

were derived from both Reynolds numbers and laminar viscosity. Reference

Mach number was M = 0.135, while the static pressure was estimated as

2.3197 x 105 (Newton/m2 ). The static temperature of the stream was 312.4"K.

Meanwhile, the static pressure at the exit boundary was assumed to be

atmospheric. Thus, the ratio of exit static pressure to the inlet pressure

was 2. Reference length used in the computation was the maximum radius of

the rig which was 0.2794m. The same flow conditions were used for both plain

Uand shaped disk pump cavity. To analyze the flow in both cavities 101 mesh

points were distributed in the radial direction. In the axial direction, 60
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mesh points were used for the plain cavity case, and 71 mesh points were used

for the shaped cavity case. The grid points were tightly packed in the

vicinity of solid walls to achieve the maximum resolution in the boundary

layers. For both cases the continuity, three momenta equations and the

constant stagnation enthalpy condition were used as governing equations.

However, because of the axisymmetric flow configuration, (no change of flow

variables in the azimuthal direction), the computation required only two

directions (axial and radial direction).

Boundary Conditions

A major factor in obtaining efficient solutions for the Navier-stokes

equations is specification of appropriate boundary conditions. Specificatio~n

of boundary conditions at wall is relatively straightforward, but proper

specification at inflow and outflow boundaries presents a more difficult

problem. The present effort follows the work of Briley and

McDonald (Ref. 15) who suggest examining the charactersistics of the inviscid

problem for guidance at inflow and outflow boundaries. Appropriate boundary

conditions which were set in the present calculations are as follows:

(i) Inlet (subsonic inflow) boundary -

Function condition on ul-velocity (radial velocity)

Two-layer model on u3-velocity (axial velocity) and static enthalpy

Second derivative of static pressure set to zero.

(ii) Exit (subsonic outflow) boundary -

Second derivative of ul, u3 set to zero

Static pressure specified.

(iii) Wall boundary -

No-slip on u1 and u3

Normal (to the wall) momentum equation

Function condition on u (zero on stationary wall and nonzero on

rotating wall).
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4The so-caled two-layer model used at the inflow boundary is

*essentially a total pressure boundary condition applied to the core flow with

a specified boundary layer profile shape for the wall region. Matching the

static pressure at the edge, defined by the first computational point from
u3 was greater than or equal to 0.99 on the

thewal a whchI I~j I I a

previous time step, enables calcuation of u 3  at this point. This provides

the required normalizing value for the pre-specified boundary layer profile

shape. Overall, the method provides a mechanism for drawing mass into the

system in order to satisfy the downstream pressure given an upstream core

total pressure. This specification corresponds to the usual wind

tunnel experiment where stagnation conditions are set in an upstream

reservoir and static pressure is set at some downstream location.

Specification of an inlet mass flux could be accorplished indirectly by

varying the downstream static pressure.

Calculation

Effective running of the disk pumping cavity problem requires a case

running protocol to obtain rapid convergence. The basic strategy for running

.. -. the code consists of several steps. First, initial conditions within the

. both cavities assumed stagnant flow. Then, as the specified exit pressure

at the outflow boundary is lowered, mass flow is drawn through the inlet.

Swirl was assumed to be zero, and a mixing length turbulence model was used

initially to develop the basic flow pattern within the cavities without the

complexities of a swirl equation or a two-equation turbulence model.

Then two different methods were implemented for the plain and shaped disks.

In the case of the plain disk, rotation effects was introduced before the

two-equation turbulence model replaced the mixing-length model. On the other

hand, in the case of the shaped disk, the order was reversed, i.e. the

*i two-equation turbulence model was introduced before rotation effects.

Both run protocols were successful and neither apreared to have a definite

advantage over the other. In both cases two-equation turbulence model

equations were initially solved with invariant mean flows to develop

approximate turbulence energy and dissipation fields prior to coupling these

fields with the mean flow. Then, finally all equations including the

turbulence equations were solved simultaneously until a converged solution

was obtained.
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Although the present Navier-Stokes analysis can be used both for

time-dependent and steady-state flow situations, the focus of the present

investigation is the steady state solution. In such a case, it is not

necessary to accurately follow the transient motion and indeed it may be

- advantageous from a computational efficiency view point not to follow the

transient motion accurately, if this accelerates convergence to the steady

state. The present approach utilizes the matrix conditioning technique of

Refs. 16 and 17 to accelerate convergence to a steady state. Using the

*techniques described in Refs. 16 and 17, the convergence took 250

time steps for both plain and shaped disk, respectively. The CRAY CPU time

required for the convergence of both cases was less than 2100 secs.

* Results

4 The calcuated velocity, Mach number and stream function contours of two

test case±s are presented in Fig. 4 through Fig. 10. Since experimental data

is not available for direct comparison, discussion will primarily focus on

* q(Ialitative description of the essential physical features predicted by the

Computation. Although both dependent variable contours and flow streamlines

- are presented, the clearest picture of the generated flow can be obtained

from the flow streamlines.

In the case of a plain disk pump, a large recirculating fluid motion is

generated within the cavity as shown in Figs. 8 and 9. The flow pattern in

* the absence of wall rotation is basically determined by the convection of the

fluid due to the pressure difference between inlet and exit. In the present

* work, the static pressure at the exit is one-half of the pressure at the

inlet. When the effects of disk wall rotation are considered, the flow

- pattern change is apparent including the radial displacment of the

* recirculation region within the cavity as seen in Fig. 9. However,

considering that the basic flow structure still remains the same with and

I without rotation, it is likely that centrifugal pumping action is not

dominant over the effects of convection because of a relatively large

pressure drop in this case.

The flow pattern within the shaped disk cavity in the absence of wall

I rotation is different from the plain case. It is likely that this difference

- is strongly dependent on the geometry (Fig. 9-10). Under the same
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nonrotatng and pressure condition as the plain disk case, the flow within

the shaped disk contains only a small recirculation region in the vicinity of

reentrant corner near the inlet. When the effects of rotation are

considered, the flow within the cavity changes substantially as shown in

Fig. 10. The centrifugal pumping action causes a considerable change in the

flow field for the shaped disk pump case. Since such a complex fluid motion

can be associated with many physical mechanisms, it may be too premature to

draw a definite conclusion before further detailed parametric studies are

performed. However, it is likely that centrifugal pumping action sweeps the

fluid away in the radial outward direction near the rotating cavity wall and

induces a large recirculating fluid motion. Velocity and Mach number

contours as shown in Figs. 4-7 present the further details of flow structures

associated with both disk pump shapes for the cases which include rotation.

Of particular interest is the contours of swirling velocity component MV.

* The figure indicates that the convection is closely related to the faster

transfer of the swirling component of momentum in the axial direction for

both shapes of disk.

A major application of the rotor disk is to pump the cooling air out

into the hot gas path. However, since the disk wall (rotating) is exposed to

hot temperature environment, the fluids within the cavity especially in the

vicinity of the rotating disk may heat up due to the heat transfer through

the disk wall. As a result, not only cooling efficiency loss but also

structural damage may arise. Comparison of flow pattern in both shapes

indicate that the shaped disk is more efficient in preventing such a hot

temperature region developing adjacent to the disk wall. In this regard it

should be noted that the closeness of the streamlines indicates the speed of

the flow. The contours in Fig. 8 clearly show a large recirculation region

along the right side wall for the plain disk. Fluid trapped in this region

will heat up and lose its cooling effectiveness. Hence, the right hand wall

in the plain disk would be expected to be a region of high wall temperature.

S In the case of the rotating shaped disk, the situation is much more favorable

as shown in Fig. 8. Here cooling problems may occur on the upper wall,

however, both the right and left side walls appear to be in contact with

relatively rapidly moving c')oling fluid. It should be noted that rotation

makes a major difference in the flow and heat transfer patterns for the

k . shaped cavity. In view of the strong dependence of flow field within the
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cavity on the shape of the disk wall, various geometric shapes should be

explored to find an optimum shape of the disk pump.

ESTIMATES OF TECHNICAL FEASIBILITY

Under the present effort, an existing Navier-Stokes solver developed

for the analysis of labyrinth seal has been extended and applied to

demonstrate its capability for the disk pumping problem. Coordinate systems

were generated by the constructive approach, and used successfully for both

plain and shaped disk pumps. However, a more general elliptic solver has

been developed at SRA to generate the coordinate systems for the complex

geometry of the advanced seal. This coordinate generation code would be

available for the future analysis of disk pump problems under the more

complex geometric configuration (Fig. 11).

The Navier-Stokes code was used to calculate the disk pump flow

fields for two cases. In order to reduce run time vectorization of the code

was initiated under the current effort. The partially vectorized code

reduced run times by factor of 2 when continuity equation and two momentum

equations were solved. Even with an additional momentum equation, the run

time was saved by 25% on CRAY-1 computer. Based upon other efforts at SRA,

it is expected that full vectorization would reduce run times by a further

* factor of 5 to 10. Although in the present work a constant s.gration

" enthalpy relation was assumed, the current code does include an energy

*" equation (although not optimized) and has been successfully used in heat

transfer calculations (Ref. 18). With a partially vectorized code, the work

done under the present effort has allowed steady disk pump flow fields to be

generated in less than 2100 secs of CRAY CPU time, i.e., approximately

$1200 at a commercially available rate.

The present effort has concentrated on the analysis of flow fields

within the modeled cavity shapes. Because of the general nature of the

Navier-Stokes code more complex disk pump configurations can be considered

in the future (Fig. 11). For these cases the elliptic coordinate system

solver would be used to generate the more complex configurations. Results

obtained for flow within both cavities are very encouraging in verifying the

capability of the Navier-Stokes procedure for such a practically important

problem. Although not pursued in the present effort, the code cold be used

to predict the heat transfer through the disk pump wall by solving energy

equation.
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The calculations completed under the Phase I effort gave physically realistic

flow patterns, and showed the effect of cavity shape and wall rotation upon

the flow field. The run times used were encouraging, and with full

vectorization it is expected that this code could be used as a major tool for

the understanding and in the design of disk cavity configurations including

wall heat transfer effects.

I.
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APPENDIX A - Split LBI Algorithm

Linearization and Time Differencing

The system of governing equations to be solved consists of three/four

equations: continuity and two/three components of momentum equation in

three/four dependent variables: P, u, v, w. This system of equations can be

writLen at a single grid point in the following form:

aHIXh- () + S(f) (A-1)

where * is the column-vector of dependent variables, H and S are column-

,vector algebraic functions of *, and D is a column vector whose elements are

the spatial differential operators which generate all spatial derivatives

appearing in the governing equation associated with that element.

The solution procedure is based on the following two-level implicit

- - time-difference approximations of (Eq. 1):

''-"(n+ Hn)A B(n+I sn+l f

(H -H )/At =80D +S ) + (1-B) (Dn + S n) (A-2)

where, for example, Hn + l denotes H(#n+l) and At U tn+ l - tn. The

parameter 8 (0.5 < 8 - 1) permits a variable time-centering of the scheme,

with a truncation error of order tat 2 , (8 - 1/2) At].

A local time linearization (Taylor expansion about #n) of requisite

formal accuracy is introduced, and this serves to define a linear

differential operator L such that

Dn+l f Dn + Ln(,n+l - n) + O(At 2 ) (A-3)

V.
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Similarly,

Hn+l = Hn (+H/a,)n (,n+l _ n) + 0 (At 2 ) (A-4)

S +I . Sn+ (aS/3,)n (*n+l _ n) + 0 (At 2 ) (A-5)

- Eqs. (3-5) are inserted into Eq. (2) to obtain the following system which is

linear in n+l

(A - t Ln) (n+l _ ) At (Dn + n ) (A-6)

and which is termed a linearized block implilcit (LBI) scheme. Here, A

denotes a matrix defined by

A-- (all/a) n - BAt (3s/30) n  (A-7)

Eq. (6) has 0 (At) accuracy unless H - *, in which case the accuracy is the

same as Eq. (2).

Special Treatment of Diffusive Terms

The time differencing of diffusive terms is modified to accomodate

cross-derivative terms and also turbulent viscosity and artificial dissipa-

tion coefficients which depend on the solution variables. Although formal

linearization of the convection and pressure gradient terms and the resulting

implicit coupling of variables is critical to the stability and rapid con-

vergence of the algorithm, this does not appear to be important for the

turbulent viscosity and artificial dissipation coefficients. Since the

relationship between Ue and dj and the mean flow variables is not conven-
iently linearized, these diffusive coefficients are evaluated explicitly at

t during each time step. Notationally, this is equivalent to neglecting

terms proportional to a ue/a0 or 3dj/a# in Ln , which are formally pre-

sent in the Taylor series expansion (3), but retaining all terms proportional

to Ue or dj in both Ln and Dn .
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It has been found through extensive experience that this has little if any

effect on the performance of the algorithm. This treatment also has the added

benefit that the turbulence model equations can be decoupled from the system of

mean flow equations by an appropriate matrix partitioning, and solved separately

in each step of the ADI solution procedure. This reduces the block size of the

block tridiagonal systems which must be solved in each step and thus reduces the

computational labor.

In addition, the viscous terms in the present formulation include a number

of cross-derivative terms implicitly within the ADI treatment which follows, it

is not at all convenient to do so; and consequently, all cross-derivative terms

are evaluated explicitly at tn. For a scalar model equation representing

combined convection and diffusion, it has been shown by Beam and Warming that the

explicit treatment of cross-derivative terms does not degrade the unconditional

stability of the present algorithm. To preserve notational simplicity, it is

understood that all cross-derivative terms appearing in Ln are neglected but

are retained in Dn. It is important to note that neglecting terms in Ln has

no effect on steady solutions of Eq. (6), since *n+l 2 0 and thus Eq. (6)

reduces to the steady form of the equations: Dn + Sn = 0. Aside from

stability considerations, the only effect of neglecting terms in Ln is to

introduce an 0 (At) truncation error.

Consistent Splitting of the LBI Scheme

To obtain an efficient algorithm, the linearized system (A-6) is split using

ADI techniques. To obtain the split scheme, the multidimensional operator L is

rewritten as the sum of three "one-dimensional" sub-operators Li (i = 1, 2, 3)

each of which contains all terms having derivatives with respect to the i-th

coordinate. The split form of Eq. (6) can be derived either as in

(Refs. 4 and 5) by following the procedure described by Douglas and Gunn

(Ref. 10) in their generalization and unification of scalar ADI schemes, or using

approximate factorization. For the present system of equations, the split

algorithm is given by

n) * n) n + n
(A - OAtL) (* - * ) -At (D + Sn ) (A-8)

-- "(An ** n) *_

A-BAtL n) ( -n =A(* -n) (A-9)

(A - B ntL ) (,n+l - *n) - A _ -n) (A-10)
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where and are consistent intermediate solutions. If spatial

derivatives appearing in Li and D are replace by three-point difference

formulas, as indicated previously, then each step in Eqs. (8-10) can be solved by

a block-tridiagonal elimination.
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